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1 Imaginary numbers

For any real number z € R, y = 22 > 0, independent of whether x is positive or negative. [Note € means
“in” and R denotes the set of complex numbers.] This means ,/y would only seem to be well-defined if > 0.
So we can ask the question: what is v/—1? We know there’s no real number 2 such that @ = v/—1, because
22 > 0. So we need to extend the set of real numbers to include /—1. We call the v/—1 the imaginary unit
i, which satisfies

i? = -1

We'll assume that the standard rules of multiplication and addition apply to these imaginary numbers. So
we can multiply the imaginary unit ¢ by a real number to get another imaginary number. We say this number
is imaginary because when we square it we get a negative real number, i.e. for z € R

(ix)? = i%2? = —2?



soifr >0

Veor = ViV=1 =i

2 Complex numbers

We saw above that imaginary numbers allow us to find /2 for any z, both > 0 and z < 0. We could
also define a complex number z as a number that consists of a sum of a real number a and an imaginary
number b (where b € R)

z = a+1b.

This set of numbers includes both the real numbers (when b = 0) and imaginary numbers (when a = 0).
We'll assume that all of our standard rules of multiplication and addition carry over to complex numbers.
So for z = a + ib, and w = ¢ + id addition can be carried out as

z+w=(a+ib)+ (c+id)=(a+c)+ (b+d)i
and multiplication can be done as follows
zw = (a +ib)(c + id)
= ac + ibc + iad + (ib)(id)

= ac + i*bd + i(bc + ad)
= (ac — bd) + i(bc + ad)

3 Absolute values

The absolute value or modulus of a complex number z, which we denote |z| generalises tells us the size
of a complex number. For z =z + iy (z,y € R), |2| is defined as

o = Vo 2

so |z| > 0. We always take the positive square root. This generalises the idea of the modulus/absolute value
of a real number |z| =z if x > 0 and |z| = —z if x < 0.

4 Complex conjugate

The complex conjugate of a complex number z = x + iy (z,y € R) is denoted z*. The complex conjugate or
simply conjugate is defined as
¥ =x —1y.

So we just change the sign of the imaginary part, and leave the real part unchanged.

It’s fairly straight forward to verify that
(z+w) =z"+w"

and

*

(zw)* = 2*w*.



We can relate this to the modulus by considering z*z

2"z = (v —iy)(x +iy)
=22 +izy —izy + (iy)(—iy)
= — (*)y°
— 2?4y
= |2[?

So if we multiply any z by z* we get a real number back. This can be useful for simplify expressions like
w/z, for z = a+ib, and w = ¢+ id
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5 Real and imaginary parts

The real part of a complex number z = z + iy (z,y € R) is
Relz] =z

and likewise the imaginary part is
Im[z] = y.

Using the rules of addition and multiplication it is fairly straightforward to show that
1 *
Re[z] = §(z+ z")

and

We can relate the real and imaginary parts of a complex number by factoring our |z|

|(x+y) 12| x iy Y
z2=2Z||—+1t— ) = |2 7
|Z| ‘Z| \/$2—|—y2 \/;E2—|—y2

We also know that z/|z| is bounded between -1 and 1 because

<2 <

SV

1< Y <

— |2l < Relz] <[]

and likewise

so from this we know

and
—|z[ < Im[z] < |2

so the real and imaginary parts of a complex number are bounded below by —|z| and above by |z|. These
inequalities will be very useful in quantum mechanics.



6 Argand diagrams

We can map a complex number onto a point in 2D, with an x coordinate x = Re[z] and y = Re[z]

Im|[z]

We see that |z| is the length of the line connecting the origin on this diagram to the complex number z (by
Pythagoras theorem).

From the geometric view of the z on the Argand diagram, it’s now very clear to see that
—|zl < Re[2] < 2]

and
2] < 2] < |2,

7 Polar form of complex numbers

From the argand diagram we see there’s another way we could write a complex number: in a polar coordinate
form. ¢ is the angle made between the positive x (Re[z]) axis, and the line connecting the origin to the
complex number z. As mentioned above |z| is the length of the hypotenuse of the right-angled triangle
connecting the origin, the point z, (z,y), and the point (x,0). Combining this we can write

Re[z] = x = |z| cos(¢)

and
Im[2] = y = |2/ sin(6).

This means we can instead write the complex number z in a polar form as
2 = |2 (cos(6) + isin(@)).
The angle ¢ is called the argument of the complex number arg(z)
arg(z) = ¢

and we normally take this to either be between 0 and 27 or —7 and 7. Both conventions are fine to use and
one may be more useful than the other in different circumstances.



8 Euler’s formula

We will now show that polar form of a complex number can also be written as
z = |z]e®?.
This requires us to show that Euler’s formula is true

e = cos(x) + isin(x).

The Taylor series for e*, cos(z) and sin(z) fully defined these functions. These Taylor series are given by

oo
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In order to evaluate e we need (iz)?" and (iz)?"*!
(Z'l,)2n _ ,L'2n1,2n _ (i2)nm2n _ (_1)711,271
(ix)*" T = ja(iz)®" = iz(—1)"z* = i(-1)"2*" !

Using the Taylor series for e, we can split the sum into a sum over odd n and even n terms. We can write
the odd terms as n = 2m and even terms as n = 2m + 1, and then remember that we can change the symbol
for the index in the sum freely, so we replace m — n. This gives

e Z > 2n+1

2n+1

Using the formulas we found above for (iz)?" and (ixz)?"*! we can simplify this to

. [e%) 2n+1
° :nZ::O(_ (2n)! +ZZ 2n+)

The two terms in this are just the Taylor series for cos(x) and isin(z), so we have found
e = cos(z) + isin(z).

This proves Euler’s formula.

9 Properties of the polar form
The polar form is very useful for simplifying products of complex numbers. We can write z; = |21 |e!®* and
= |22/€?2, and using e%e® = e we find
2129 = |Zl | |22|ei(¢1+¢2)

Likewise |z|* = |z], because |z| is just a real number, and for real ¢

(e')* = (cos(¢) + isin(p))* = cos(¢) — isin(p) = cos(—p) + isin(—¢) = =%



0 4
2* = |z|e” .

Other formulae that are often useful are
1 . i
cos(x) = 5(6“” +e™)

and ,
sin(x) = —%(e“’ —e ).

This is analogous to the hyperbolic tangent functions
1 _
cosh(z) = i(ez +e™ )
and

sinh(z) = %(ex —e 7).

10 Exercises
Try these short exercises to test your understanding.

1. Simplify the following complex numbers (i) (2 +i)(3 — 2i) (ii) (2 +1)/(3 — 2i) (iii) €*(37/2)
2. Show that e* = eRel?l(cos(Im[z]) + i sin(Im[2])).

Show that || = 1, and |e!®z| = |z] for ¢ € R.

LS

Use the polar form of complex numbers z; and z2 to write down z1/z5 in polar form.

5. Derive expressions for sin(a + 3) and cos(a + ) in terms of sin(a), sin(f), cos(a) and cos(3) by
considering e*®eP.
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