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1 Imaginary numbers

For any real number x ∈ R, y = x2 ≥ 0, independent of whether x is positive or negative. [Note ∈ means
“in” and R denotes the set of complex numbers.] This means

√
y would only seem to be well-defined if y ≥ 0.

So we can ask the question: what is
√
−1? We know there’s no real number x such that x =

√
−1, because

x2 ≥ 0. So we need to extend the set of real numbers to include
√
−1. We call the

√
−1 the imaginary unit

i, which satisfies
i2 = −1

We’ll assume that the standard rules of multiplication and addition apply to these imaginary numbers. So
we can multiply the imaginary unit i by a real number to get another imaginary number. We say this number
is imaginary because when we square it we get a negative real number, i.e. for x ∈ R

(ix)2 = i2x2 = −x2
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so if r > 0 √
−r =

√
r
√
−1 = ±i

√
r.

2 Complex numbers

We saw above that imaginary numbers allow us to find
√
x for any x, both x ≥ 0 and x < 0. We could

also define a complex number z as a number that consists of a sum of a real number a and an imaginary
number ib (where b ∈ R)

z = a+ ib.

This set of numbers includes both the real numbers (when b = 0) and imaginary numbers (when a = 0).
We’ll assume that all of our standard rules of multiplication and addition carry over to complex numbers.
So for z = a+ ib, and w = c+ id addition can be carried out as

z + w = (a+ ib) + (c+ id) = (a+ c) + (b+ d)i

and multiplication can be done as follows

zw = (a+ ib)(c+ id)

= ac+ ibc+ iad+ (ib)(id)

= ac+ i2bd+ i(bc+ ad)

= (ac− bd) + i(bc+ ad)

3 Absolute values

The absolute value or modulus of a complex number z, which we denote |z| generalises tells us the size
of a complex number. For z = x+ iy (x, y ∈ R), |z| is defined as

|z| =
√
x2 + y2

so |z| ≥ 0. We always take the positive square root. This generalises the idea of the modulus/absolute value
of a real number |x| = x if x ≥ 0 and |x| = −x if x < 0.

4 Complex conjugate

The complex conjugate of a complex number z = x+ iy (x, y ∈ R) is denoted z∗. The complex conjugate or
simply conjugate is defined as

z∗ = x− iy.

So we just change the sign of the imaginary part, and leave the real part unchanged.

It’s fairly straight forward to verify that

(z + w)∗ = z∗ + w∗

and
(zw)∗ = z∗w∗.
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We can relate this to the modulus by considering z∗z

z∗z = (x− iy)(x+ iy)

= x2 + ixy − ixy + (iy)(−iy)

= x2 − (i2)y2

= x2 + y2

= |z|2

So if we multiply any z by z∗ we get a real number back. This can be useful for simplify expressions like
w/z, for z = a+ ib, and w = c+ id

w

z
=

w

z

z

z∗

=
wz∗

|z|2

=
(ca+ bd) + (ad− bc)i

a2 + b2

5 Real and imaginary parts

The real part of a complex number z = x+ iy (x, y ∈ R) is

Re[z] = x

and likewise the imaginary part is
Im[z] = y.

Using the rules of addition and multiplication it is fairly straightforward to show that

Re[z] =
1

2
(z + z∗)

and

Im[z] = − i

2
(z − z∗).

We can relate the real and imaginary parts of a complex number by factoring our |z|

z = |z|
(

x

|z|
+ i

y

|z|

)
= |z|

(
x√

x2 + y2
+ i

y√
x2 + y2

)

We also know that x/|z| is bounded between -1 and 1 because

−1 ≤ x√
x2 + y2

≤ 1

and likewise
−1 ≤ y√

x2 + y2
≤ 1

so from this we know
−|z| ≤ Re[z] ≤ |z|

and
−|z| ≤ Im[z] ≤ |z|

so the real and imaginary parts of a complex number are bounded below by −|z| and above by |z|. These
inequalities will be very useful in quantum mechanics.
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6 Argand diagrams

We can map a complex number onto a point in 2D, with an x coordinate x = Re[z] and y = Re[z]

Re[z]

Im[z]

z = x+ iy

|z|

x

y

ϕ

We see that |z| is the length of the line connecting the origin on this diagram to the complex number z (by
Pythagoras theorem).

From the geometric view of the z on the Argand diagram, it’s now very clear to see that

−|z| ≤ Re[z] ≤ |z|

and
−|z| ≤ Im[z] ≤ |z|.

7 Polar form of complex numbers

From the argand diagram we see there’s another way we could write a complex number: in a polar coordinate
form. ϕ is the angle made between the positive x (Re[z]) axis, and the line connecting the origin to the
complex number z. As mentioned above |z| is the length of the hypotenuse of the right-angled triangle
connecting the origin, the point z, (x, y), and the point (x, 0). Combining this we can write

Re[z] = x = |z| cos(ϕ)

and
Im[z] = y = |z| sin(ϕ).

This means we can instead write the complex number z in a polar form as

z = |z|(cos(ϕ) + i sin(ϕ)).

The angle ϕ is called the argument of the complex number arg(z)

arg(z) = ϕ

and we normally take this to either be between 0 and 2π or −π and π. Both conventions are fine to use and
one may be more useful than the other in different circumstances.
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8 Euler’s formula

We will now show that polar form of a complex number can also be written as

z = |z|eiϕ.

This requires us to show that Euler’s formula is true

eix = cos(x) + i sin(x).

The Taylor series for ex, cos(x) and sin(x) fully defined these functions. These Taylor series are given by

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · · =

∞∑
n=0

xn

n!

cos(x) = 1− 1

2!
x2 +

1

4!
x4 · · · =

∞∑
n=0

(−1)n
x2n

(2n)!

sin(x) = x− 1

3!
x3 + · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

In order to evaluate eix we need (ix)2n and (ix)2n+1

(ix)2n = i2nx2n = (i2)nx2n = (−1)nx2n

(ix)2n+1 = ix(ix)2n = ix(−1)nx2n = i(−1)nx2n+1

Using the Taylor series for eix, we can split the sum into a sum over odd n and even n terms. We can write
the odd terms as n = 2m and even terms as n = 2m+1, and then remember that we can change the symbol
for the index in the sum freely, so we replace m → n. This gives

eix =

∞∑
n=0

(ix)2n

(2n)!
+

∞∑
n=0

(ix)2n+1

(2n+ 1)!

Using the formulas we found above for (ix)2n and (ix)2n+1 we can simplify this to

eix =

∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

The two terms in this are just the Taylor series for cos(x) and i sin(x), so we have found

eix = cos(x) + i sin(x).

This proves Euler’s formula.

9 Properties of the polar form

The polar form is very useful for simplifying products of complex numbers. We can write z1 = |z1|eiϕ1 and
z2 = |z2|eiϕ2 , and using eaeb = ea+b we find

z1z2 = |z1||z2|ei(ϕ1+ϕ2)

Likewise |z|∗ = |z|, because |z| is just a real number, and for real ϕ

(eiϕ)∗ = (cos(ϕ) + i sin(ϕ))∗ = cos(ϕ)− i sin(ϕ) = cos(−ϕ) + i sin(−ϕ) = e−iϕ
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so
z∗ = |z|e−iϕ.

Other formulae that are often useful are

cos(x) =
1

2
(eix + e−ix)

and

sin(x) = − i

2
(eix − e−ix).

This is analogous to the hyperbolic tangent functions

cosh(x) =
1

2
(ex + e−x)

and

sinh(x) =
1

2
(ex − e−x).

10 Exercises

Try these short exercises to test your understanding.

1. Simplify the following complex numbers (i) (2 + i)(3− 2i) (ii) (2 + i)/(3− 2i) (iii) ei(3π/2)

2. Show that ez = eRe[z](cos(Im[z]) + i sin(Im[z])).

3. Show that |eiϕ| = 1, and |eiϕz| = |z| for ϕ ∈ R.

4. Use the polar form of complex numbers z1 and z2 to write down z1/z2 in polar form.

5. Derive expressions for sin(α+ β) and cos(α+ β) in terms of sin(α), sin(β), cos(α) and cos(β) by
considering eiαeiβ .
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