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Introduction

This guide covers the linear algebra you’ll need for quantum mechanics. We’ll keep things practical and
focus on understanding rather than rigorous proofs.

1 Vectors

A vector is just an ordered list of numbers. In QM, vectors often represent quantum states.

1.1 Column Vectors

We usually write vectors as columns:

v =

 2
−1
3



1.2 Row Vectors

Sometimes we write them as rows (we’ll see why soon):

wT =
(
1 4 −2

)
1.3 Vector elements

The element of a vector is denoted
[v]n = vn

for example:

v =

 2
−i

3 + 2i

 =⇒ [v]1 = 2, [v]2 = −i, [v]3 = 3 + 2i

1.4 Vector Addition and Scalar Multiplication

We add vectors element by element. We multiply vectors by scalars by multiplying each element by the
scalar. (

2
−1

)
+

(
3
5

)
=

(
5
4

)
3

(
2
−1

)
=

(
6
−3

)
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1.5 Dot Product

The inner product of two vectors gives a scalar:

v · w =

N∑
n=1

vnwm

v · w =

1
2
3

 ·

 4
−1
2

 = 1(4) + 2(−1) + 3(2) = 8

1.6 Inner product

The inner product, ⟨v|w⟩, is subtly different to the dot product. The first vector is complex conjugated, then
the dot-product is taken

⟨v|w⟩ = v∗ · w

Notice that if the vectors only contain real numbers, then the dot product and inner product are the same,
but for vectors of complex numbers they are different, e.g.

v · w =

(
i
2

)
·
(
2
3

)
= 2i+ 6

but

⟨v|w⟩ = v∗ · w =

(
i
2

)∗

·
(
2
3

)
= −2i+ 6

2 Matrices

Matrices are rectangular arrays of numbers.

2.1 Basic Matrix

A =

(
1 2 3
4 5 6

)
This is a 2× 3 matrix (2 rows, 3 columns).

2.2 Square Matrices

Most operators in QM are square matrices:

H =

(
2 1
1 3

)

2.3 Matrix elements

[A]ij ≡ Aij denotes the number in the row i column j of the matrix A.
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3 Matrix-Vector Multiplication

When a matrix acts on a vector, it transforms it into another vector.

Example: (
2 1
1 3

)(
1
2

)
=

(
2(1) + 1(2)
1(1) + 3(2)

)
=

(
4
7

)
The rule: element [A]ij of the matrix multiplies element j of the vector, then sum over j.

This is equivalent to taking the dot product of row i of the matrix with the vector to make the ith row of
the new vector (

rT1
rT2

)
v =

(
r1 · v
r2 · v

)
In terms of matrix/vector elements, the element of the vector Av is

[Av]i =
∑
j

[A]ij [v]j .

Matrices multiplying vectors represent linear transformations of vectors e.g. skews, rotations, inversions,
reflections etc.

4 Matrix Multiplication

Multiply matrices by taking rows of the first times columns of the second:

(
1 2
3 4

)(
5 6
7 8

)
=

(
1(5) + 2(7) 1(6) + 2(8)
3(5) + 4(7) 3(6) + 4(8)

)
=

(
19 22
43 50

)
Note: Matrix multiplication is not commutative. Usually AB ̸= BA (although there are special cases where
AB = BA).

Matrix multiplication is equivalent to taking the dot product of row i of the left matrix with column j of
the right matrix to make the entry in the ith row and jth column of the new vector(

rT1
rT2

)(
c1 c2 c3

)
=

(
r1 · c1 r1 · c2 r1 · c3
r2 · c1 r2 · c2 r2 · c3

)
In terms of matrix/vector elements, the element of the vector Av is

[A B]ij =
∑
k

[A]ik[B]kj .

5 Identity matrix

The identity matrix is square and has ones on its diagonal e.g. for a 3× 3 matrix

1 =

1 0 0
0 1 0
0 0 1


For any matrix

A = 1 A = A 1.
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6 Transpose

The transpose flips rows and columns. Notation: AT

A =

(
1 2 3
4 5 6

)
⇒ AT =

1 4
2 5
3 6


and in terms of matrix elements [AT ]ij = [A]ji.

For a column vector:

v =

1
2
3

 ⇒ vT =
(
1 2 3

)
This is why we used vT to denote a row vector above.

7 Conjugate Transpose (Hermitian Conjugate)

For complex matrices, we need the conjugate transpose (also called Hermitian conjugate or adjoint). Nota-
tion: A† or A∗

Take the transpose and take the complex conjugate of each element.

Example:

A =

(
1 + i 2
3 4− 2i

)
⇒ A† =

(
1− i 3
2 4 + 2i

)
Hermitian matrices: If A = A†, the matrix is Hermitian. These are crucial in quantum mechanics because
observables are represented by Hermitian operators.

8 Determinants

The determinant tells us if a matrix is invertible and has geometric meaning (volume scaling).

8.1 2×2 Determinant

det

(
a b
c d

)
= ad− bc

Example:

det

(
3 1
2 4

)
= 3(4)− 1(2) = 10

8.2 3×3 Determinant

Use cofactor expansion along the first row:

det

a b c
d e f
g h i

 = a det

(
e f
h i

)
− bdet

(
d f
g i

)
+ cdet

(
d e
g h

)
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Example:

det

1 2 3
0 1 4
5 6 0

 = 1det

(
1 4
6 0

)
− 2 det

(
0 4
5 0

)
+ 3det

(
0 1
5 6

)
= 1(0− 24)− 2(0− 20) + 3(0− 5) = −24 + 40− 15 = 1

Determinants have several important properties:

• det
(
AB

)
= det

(
A
)
det

(
B
)
(determinant of product is product of determinants)

• det
(
AT

)
= det

(
A
)
(transpose doesn’t change determinant)

• det
(
A−1

)
= 1

det(A)
(if inverse exists)

• det
(
cA

)
= cn det

(
A
)
for n× n matrix (scaling by scalar)

• det
(
1
)
= 1 (identity matrix has determinant 1)

• If det
(
A
)
= 0, the matrix is singular (not invertible)

• Swapping two rows (or columns) changes the sign of the determinant

• If two rows (or columns) are identical, det
(
A
)
= 0

• A multiple of a row can be added to another row without changing the determinant. The same goes
for columns.

9 Matrix Inverse

The inverse A−1 satisfies AA−1 = A−1A = I (identity matrix).

A matrix has an inverse only if det
(
A
)
̸= 0.

9.1 2×2 Inverse Formula

A =

(
a b
c d

)
⇒ A−1 =

1

ad− bc

(
d −b
−c a

)
Example:

A =

(
3 1
2 4

)
⇒ A−1 =

1

10

(
4 −1
−2 3

)
=

(
0.4 −0.1
−0.2 0.3

)
Check:

AA−1 =

(
3 1
2 4

)(
0.4 −0.1
−0.2 0.3

)
=

(
1 0
0 1

)
✓

For general n× n matrices, the inverse can be computed using:

A−1 =
1

det
(
A
)adj(A)

where adj(A) is the adjugate matrix - the transpose of the cofactor matrix. For larger matrices, this is
usually computed numerically rather than by hand.

Example for 3×3 matrix:
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Let A =

1 2 0
0 1 1
1 0 1


First, find the cofactor matrix. The cofactor Cij is (−1)i+j times the determinant of the 2×2 matrix obtained
by deleting row i and column j:

C11 = (+1) det

(
1 1
0 1

)
= 1, C12 = (−1) det

(
0 1
1 1

)
= 1, C13 = (+1) det

(
0 1
1 0

)
= −1

C21 = (−1) det

(
2 0
0 1

)
= −2, C22 = (+1) det

(
1 0
1 1

)
= 1, C23 = (−1) det

(
1 2
1 0

)
= 2

C31 = (+1) det

(
2 0
1 1

)
= 2, C32 = (−1) det

(
1 0
0 1

)
= −1, C33 = (+1) det

(
1 2
0 1

)
= 1

The cofactor matrix is:

 1 1 −1
−2 1 2
2 −1 1


The adjugate is the transpose of the cofactor matrix:

adj(A) =

 1 −2 2
1 1 −1
−1 2 1


Since det

(
A
)
= 2, we have:

A−1 =
1

2

 1 −2 2
1 1 −1
−1 2 1



9.2 General Properties

The inverse has several useful properties:

• (A−1)−1 = A (inverse of inverse gives back original)

• (AB)−1 = B−1A−1 (inverse of product reverses order)

• (AT )−1 = (A−1)T (transpose and inverse commute)

• (A†)−1 = (A−1)† (conjugate transpose and inverse commute)

• det
(
A−1

)
= 1

det(A)

10 Eigenvalues and Eigenvectors

This is likely the most important topic for quantum mechanics.

An eigenvector v of matrix A is a vector that only gets scaled (not rotated) when A acts on it:

Av = λv

where λ is the eigenvalue (the scaling factor). In this equation both v and λ are unknowns.
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This has a trivial solution of v = 0 (the vector that just contains zeros) and λ = anything. We’re nor-
mally only interested in the non-trivial solutions, when v ̸= 0, which we call the eigenvectors. For each
eigenvector, the corresponding solution for λ is called the eigenvalue.

We can rearrange the equation above to
(A− 1λ)v = 0

so when the solution for v is not zero, the matrix (A− 1λ) must not be non-invertible. From the above, we

see that the solution is non-invertible if and only if its determinant is zero det
(
A− 1λ

)
= 0, this is called

the characteristic equation. (This is because the matrix inverse (A− 1λ) = adj(A)/ det
(
A− 1λ

)
.)

10.1 Finding Eigenvalues

Let’s see this in an example. To find the eigenvalues we solve the characteristic equation:

det
(
A− λI

)
= 0

Example: Find eigenvalues of A =

(
4 1
2 3

)

det

(
4− λ 1
2 3− λ

)
= 0

(4− λ)(3− λ)− 2 = 0

12− 7λ+ λ2 − 2 = 0

λ2 − 7λ+ 10 = 0

(λ− 5)(λ− 2) = 0

So λ1 = 5 and λ2 = 2.

10.2 Finding Eigenvectors

For each eigenvalue, solve (A− λI)v = 0.

For λ1 = 5: (
−1 1
2 −2

)(
v1
v2

)
=

(
0
0

)

This gives −v1 + v2 = 0, so v2 = v1. We can choose v1 =

(
1
1

)
.

For λ2 = 2: (
2 1
2 1

)(
v1
v2

)
=

(
0
0

)

This gives 2v1 + v2 = 0, so v2 = −2v1. We can choose v2 =

(
1
−2

)
.
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10.3 Matrix diagonalisation

First we note that if v is an eigenvector, then any (non-zero) scalar multiple of v is an eigenvector. If we
have a set of linearly-independent eigenvectors (which is often, but not always the case), we can choose them
to be normalised so ∥vn∥ = 1. We can put these together into a matrix

V = (v1 v2 · · · vN )

If we multiply this matrix by A we find

A V = (A v1 A v2 · · · A vN )

= (λ1v1 λ2v2 · · · λNvN )

The last line can also be written as

(v1 v2 · · · vN )


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN

 = V D

So we can write A V as
A V = V D

If the eigenvectors are all linearly independent we can write A as

A = V D V −1

Alternatively we can write
D = V −1 A V

and we say we have diagonalised A.

10.4 Why This Matters in QM

In quantum mechanics:

• Observable properties (energy, momentum, etc.) are eigenvalues

• Quantum states that have definite values are eigenvectors

• The Schrödinger equation Hψ = Eψ is an eigenvalue problem!

When you measure an observable, you always get one of its eigenvalues, and the system collapses into the
corresponding eigenvector.

Quick Reference

• Inner product: ⟨v|w⟩ = v∗1w1 + v∗2w2 + · · ·

• Matrix-vector: [Av]i =
∑

j [A]ijvj

• Transpose: [AT ]ij = [A]ji

• Conjugate transpose: [A†]ij = [A]∗ji
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• Hermitian: A = A†

• Determinant tells if invertible: det
(
A
)
̸= 0

• Eigenvalue equation: Av = λv

• Find eigenvalues: det
(
A− λI

)
= 0
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