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Introduction
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This guide covers the linear algebra you’ll need for quantum mechanics. We’ll keep things practical and

focus on understanding rather than rigorous proofs.

1 Vectors

A vector is just an ordered list of numbers. In QM, vectors often represent quantum states.

1.1 Column Vectors

We usually write vectors as columns:
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1.2 Row Vectors

Sometimes we write them as rows (we’ll see why soon):

wh'=(1 4 -2)

1.3 Vector elements

The element of a vector is denoted
[Q]n = Unp
for example:
2
v=| —i | = [h=2v=—i[v]z=3+2i
342

1.4 Vector Addition and Scalar Multiplication

We add vectors element by element. We multiply vectors by scalars by multiplying each element by the

scalar.

(36 =) +(3)= ()



1.5 Dot Product

The inner product of two vectors gives a scalar:

1.6 Inner product
The inner product, (v|w), is subtly different to the dot product. The first vector is complex conjugated, then

the dot-product is taken
(vw) =v" - w

Notice that if the vectors only contain real numbers, then the dot product and inner product are the same,
but for vectors of complex numbers they are different, e.g.

e () ()
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2 Matrices

Matrices are rectangular arrays of numbers.

2.1 Basic Matrix
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This is a 2 x 3 matrix (2 rows, 3 columns).

2.2 Square Matrices

Most operators in QM are square matrices:

[
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2.3 Matrix elements

[A];; = Ai; denotes the number in the row ¢ column j of the matrix A.



3 Matrix-Vector Multiplication

When a matrix acts on a vector, it transforms it into another vector.
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The rule: element [A];; of the matrix multiplies element j of the vector, then sum over j.

Example:

This is equivalent to taking the dot product of row ¢ of the matrix with the vector to make the ith row of

the new vector
(rlT) (rl 'U)
T|)V=
s Ty U

In terms of matrix/vector elements, the element of the vector Av is

[Av)i =) A5l

J

Matrices multiplying vectors represent linear transformations of vectors e.g. skews, rotations, inversions,
reflections etc.

4 Matrix Multiplication

Multiply matrices by taking rows of the first times columns of the second:

1 2\ (5 6\ _ [1(5)+2(7) 1(6)+2(8)) _ (19 22

3 4)\7 8)  \3(B)+4(7) 3(6)+4(8))  \43 50
Note: Matrix multiplication is not commutative. Usually AB # BA (although there are special cases where
AB = BA).

Matrix multiplication is equivalent to taking the dot product of row ¢ of the left matrix with column j of
the right matrix to make the entry in the 7th row and jth column of the new vector

T

ry (C c C)* '€ Ty1-C Iy-Cs
prJ\EL =22 =) T e ie oty T C
L2 2 =1 22 =2 12 =3

In terms of matrix/vector elements, the element of the vector Av is

A Blij =Y [Alir[Bli;-

5 Identity matrix

The identity matrix is square and has ones on its diagonal e.g. for a 3 x 3 matrix

1 0 0
1={0 1 0
0 0 1
For any matrix
A=14=4A1

S



6 Transpose

The transpose flips rows and columns. Notation: éT

1
(12 3 T
_<456>:>A_§

and in terms of matrix elements [A”];; = [A4];;.

[5S
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For a column vector:

1
v= |2 = o'=(1 2 3)
3

This is why we used v” to denote a row vector above.

7 Conjugate Transpose (Hermitian Conjugate)

For complex matrices, we need the conjugate transpose (also called Hermitian conjugate or adjoint). Nota-
tion: A or A*

Take the transpose and take the complex conjugate of each element.

_(1+i 2 f(1-i 3
_<3 4—2i> - A‘(z 4+2i>

Hermitian matrices: If A = AT, the matrix is Hermitian. These are crucial in quantum mechanics because
observables are represented by Hermitian operators.

Example:

[5S

8 Determinants

The determinant tells us if a matrix is invertible and has geometric meaning (volume scaling).

8.1 2x2 Determinant

Example:
3 1
det (2 4) =34)—-1(2) =10

8.2 3x3 Determinant

Use cofactor expansion along the first row:

a b ¢
det {d e f] =adet <e f> — bdet (d f) + cdet (d e)
g h i h i g i g h



Example:
1 2 3
det {0 1 4] =1det L4 — 2det 0 4 + 3 det 0 1
6 0 5 0 5 6
5 6 0
=10-24)—-2(0—-20)+3(0—5)=-244+40—-15=1
Determinants have several important properties:

e det (AB) det (é) det( ) (determinant of product is product of determinants)
o det (éT) det (é) (transpose doesn’t change determinant)

o det(A™') = Fl(é) (if inverse exists)

o det(cA) = c" det(A) for n x n matrix (scaling by scalar)

e det(1) =1 (identity matrix has determinant 1)

o If det(A) = 0, the matrix is singular (not invertible)

e Swapping two rows (or columns) changes the sign of the determinant
e If two rows (or columns) are identical, det(A) = 0

e A multiple of a row can be added to another row without changing the determinant. The same goes
for columns.

9 Matrix Inverse

The inverse Afl satisfies MA = é71 = I (identity matrix).

4
A matrix has an inverse only if d (é) #0

9.1 2Xx2 Inverse Formula

_fa b L1 (d b
A(c d) = 4 ad—bc(—c a>
31 L 14 -1\ _[04 —01
(2 4) > 4 _10<—2 3)‘(—0.2 0.3)

(3 1\ (04 —01\_ (1 0
44 _(2 4) (0.2 0.3>_<0 1)/

For general n X n matrices, the inverse can be computed using;:

Example:

[sS
I

Check:

_ 1 .
A = det (é) adj(4)

where adj(4) is the adjugate matrix - the transpose of the cofactor matrix. For larger matrices, this is
usually computed numerically rather than by hand.

Example for 3x3 matrix:



120
Let A= [0 1 1
10 1

First, find the cofactor matrix. The cofactor Cy; is (—1)"/ times the determinant of the 2x2 matrix obtained

by deleting row ¢ and column j:

11 0 1 0 1
011 = (+1) det (O 1) = ]., Clg = (—1) det (1 1) = ]., Clg = (+1) det <1 0) =-1
2 0 1 0 1 2
021 = (—1) det (0 1) = —2, 022 = (+1) det (1 1) = 1, 023 = (—1) det (1 0> =2
2 0 1 0 1 2
031 = (+1) det (1 1) = 2, 032 = (—1) det <O 1) = —1, 033 = (+1) det (0 1> =1
1 1 -1
The cofactor matrix is: | =2 1 2
2 -1 1

The adjugate is the transpose of the cofactor matrix:

1 -2 2
adj(4)=11 1 -1
N -1 2 1
Since det (é) = 2, we have:
1 1 -2 2
At==1 1 =1
- 2\ 2 1

9.2 General Properties
The inverse has several useful properties:

. (é_l)_1 = A (inverse of inverse gives back original)
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10 Eigenvalues and Eigenvectors

This is likely the most important topic for quantum mechanics.
An eigenvector v of matrix A is a vector that only gets scaled (not rotated) when A acts on it:

Av=

where X is the eigenvalue (the scaling factor). In this equation both v and A are unknowns.



This has a trivial solution of v = 0 (the vector that just contains zeros) and A = anything. We’re nor-
mally only interested in the non-trivial solutions, when v # 0, which we call the eigenvectors. For each
eigenvector, the corresponding solution for A is called the eigenvalue.

We can rearrange the equation above to
A-1Nv=0

so when the solution for v is not zero, the matrix (A — 1\) must not be non-invertible. From the above, we
see that the solution is non-invertible if and only if its determinant is zero det (A — 1)\) = 0, this is called
the characteristic equation. (This is because the matrix inverse (4 — 1)) = adj(A4)/ det(A — 1)).)

10.1 Finding Eigenvalues

Let’s see this in an example. To find the eigenvalues we solve the characteristic equation:

det(A— ) =0

2 3

det<42)\ 3iA)0

(4=NB-N-2=0
12-7A+ X -2=0
M —TA4+10=0
A=5)(A=2)=0

Example: Find eigenvalues of A = (4 1)

So A1 =5 and Ay = 2.

10.2 Finding Eigenvectors

For each eigenvalue, solve (A — Al)v = 0.

For \;{ = 5:
-1 1 U1 _ 0
2 —2 V2 - 0
This gives —v; +v2 = 0, so vo = v;. We can choose v; = ( >

G2 ()=0)

This gives 2v1 + v2 = 0, so v2 = —2v;. We can choose v, = ( 12>

For )y = 2:



10.3 Matrix diagonalisation

First we note that if v is an eigenvector, then any (non-zero) scalar multiple of v is an eigenvector. If we
have a set of linearly-independent eigenvectors (which is often, but not always the case), we can choose them

to be normalised so ||v,,|| = 1. We can put these together into a matrix

V=_(v0, - vy)
If we multiply this matrix by A we find
AV=(Av; Av, - Auy)
= (My; A2wy - Anuy)
The last line can also be written as
A O 0
0 X 0
(V1 vy -+ uy) =V D
0 0 - Ay
So we can write A V. as
AV=VD

Alternatively we can write

and we say we have diagonalised A.

10.4 Why This Matters in QM
In quantum mechanics:

e Observable properties (energy, momentum, etc.) are eigenvalues
e Quantum states that have definite values are eigenvectors

e The Schrodinger equation Hi = E1 is an eigenvalue problem!

When you measure an observable, you always get one of its eigenvalues, and the system collapses into the
corresponding eigenvector.

Quick Reference

Inner product: (v|w) = viw, + vjws + - - -
e Matrix-vector: [Av]; = > [A];;v;

e Transpose: [A"];; = [A];

Conjugate transpose: [éT]ij = [A]};



Hermitian: A = éT
Determinant tells if invertible: det (é) #0

Eigenvalue equation: Av = Av

Find eigenvalues: det(4 — AI) =0

10
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